Wednesday, 21 September 2016

Basics Formula of Algebra

Algebra

1. (a + b)2 = a2 + 2ab + b2; a2 + b2 = (a+b)2 −2ab
2. (a − b)2 = a2 − 2ab + b2; a2 + b2 = (a−b)2 + 2ab
3. (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
4. (a + b)3 = a3 + b3 + 3ab(a + b); a3 + b3 = (a+b)3 −3ab(a + b)
5. (a − b)3 = a3 − b3 − 3ab(a − b); a3 − b3 = (a−b)3 + 3ab(a − b)
6. a2 − b2 = (a+b)(a − b)
7. a3 − b3 = (a−b)(a2 + ab + b2)
8. a3 + b3 = (a+b)(a2 − ab + b2)
9. an − bn = (a−b)(an−1 + an−2b + an−3b2 + _ _ _ +bn−1)
10. an = a:a:a : : : n times
11. am:an = am+n
12. am
an = am−n if m >n
= 1 if m= n
=
1
an−m if m< n;a 2 R; a 6= 0
13. (am)n = amn = (an)m
14. (ab)n = an:bn
15. _a
b _n
= an
bn
16. a0 = 1 where a 2 R; a 6= 0
17. a−n =
1
an ; an =
1
a−n
18. ap=q = pq ap
19. If am = an and a 6= _1; a 6= 0 then m=n
20. If an = bn where n 6= 0, then a = _b
21. If px;py are quadratic surds and if a + px = py, then a = 0 and x = y
22. If px;py are quadratic surds and if a+px = b+py then a = b and x = y
23. If a;m; n are positive real numbers and a 6= 1, then loga mn = logam+loga n
24. If a;m; n are positive real numbers, a 6= 1, then loga _m
n _= logam−loga n
25. If a and m are positive real numbers, a 6= 1 then logamn = nlogam
26. If a; b and k are positive real numbers, b 6= 1; k 6= 1, then logb a =
logk a
logk b
27. logb a =
1
loga b
where a; b are positive real numbers, a 6= 1; b 6= 1
28. if a;m; n are positive real numbers, a 6= 1 and if logam = logan, then
m=n

No comments:

Post a Comment